S316p.56 — Formation, Evolution, and Survival of Massive Star Clusters

Date & Time

Aug 10th at 6:00 PM until 7:30 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Michael Fall1

Institution(s): 1. STScI

This talk presents a synoptic theory for the formation, evolution, and survival of massive star clusters. These objects are important in the ecology of galaxies, as the sites of star formation and stellar feedback, as the building blocks of stellar populations. The talk is organized around the mass function of star clusters (i.e., the spectrum of cluster masses) and how it evolves with time (age). Observations show some remarkable similarities in the mass functions of clusters in different galaxies, analogous to the similarities in stellar initial mass functions (IMFs). Explaining the similarity of the mass functions of star clusters is one of the goals and successes of the theory presented here. A byproduct of this theory is a unified concept of star clusters of all types: associations, open clusters, populous clusters, globular clusters, etc. The physical processes that affect the mass functions of star clusters include the following: star formation and stellar feedback in the gas-dominated protoclusters, and the subsequent gravitational effects in the gas-free clusters, primarily stellar mass loss, tidal interactions with passing molecular clouds, and internal two-body relaxation. These processes all reduce the masses of clusters, thus lowering the amplitude of their mass function, but in such a way that the shape of the mass function is nearly preserved. The talk presents a quantitative, albeit approximate, analysis of all these effects. As a result of recent developments, there is now a growing connection between theory and observation in this field. The work presented here points to some future observations that would strengthen this connection.