S316p.23 — An X-ray and radio study of the massive star-forming cluster IRAS 20126+4104

Date & Time

Aug 10th at 6:00 PM until 7:30 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Virginie Montes1, Peter Hofner1, Crystal Anderson1, Viviana Rosero1

Institution(s): 1. New Mexico Tech

Two main competitive theories intent to explain massive star formation: the turbulent core model, which is an extension of the low-mass star formation model (McKee & Tan 2003), and models involving competitive accretion or stellar collisions (Bonnell & Bate 2006). The characterization of the cluster in which massive stars remain can help discriminate between the two main scenarios of their formation.
Until recently it was believed that massive stars were only formed in dense molecular clouds leading to a substantial cluster. However, a previous study of the massive star forming region IRAS 20126+4104 using Spitzer observations by Qiu et al. (2008), suggested that the massive protostar was isolated, and the region was showing no obvious cluster.
Here we adopt a multiwavelength technique to characterize the stellar environment of the IRAS 20126+4104 region combining Chandra X-ray ACIS-I and VLA 6cm continuum observations, and near-infrared (2MASS) data of the region. We detected 150 X-ray sources in the ACIS-I field and 13 radio sources within the 9’.2 VLA primary beam. Associating X-ray sources with their near-infrared counterparts from the 2MASS catalog and a color study of those counterparts, allow us to determine the galactic foreground/background contamination, and we conclude that 90 X-ray sources are associated with the region.
This study shows an increasing surface density of X-ray sources toward the massive protostar and a number of at least 42 YSOs within 1.2 pc distance from the massive protostar. This number is consistent with typical B-type stars clusters (Lada & Lada 2003).