S318.3.05 — Thermal Evolution of Ceres: Coupled Modelling of Accretion and Compaction by Creep

Date & Time

Aug 4th at 11:45 AM until 12:00 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Wladimir Otto Neumann1, Doris Breuer1, Tilman Spohn1

Institution(s): 1. German Aerospace Center

Ceres with a radius of ~475 km and a mean density of ~2.1 g cm3 likely experienced a complex thermal evolution influenced by the heating of radioactive elements, accretion, and compaction. Short-lived radionuclides can substantially heat a body due to radioactive decay depending on the formation time and the porosity structure of the body. The higher the porosity the smaller is the thermal conductivity and the weaker the cooling (and vice versa). Assuming an initially porous structure, compaction is thus an important process that influenced the temperature but also structure of planetesimals, since it causes a radius decrease. It has been shown that porosity loss by hot pressing is the most efficient compaction process in planetesimals and can be described by the thermally activated creep flow. Furthermore, the size of a body (i.e. the volume to surface ratio) plays an important role in the temperature evolution, therefore accretion (radius increase), its duration and the porosity of the accreting material need to be considered.
Here, we investigate the coupled effects of accretion and compaction on the thermal evolution of Ceres. We trace the development of the porosity and density both during and after the accretion that occurs in a late runaway regime to answer following questions. 1. How and at which temperatures does compaction proceed? Is Ceres expected to be partially porous? Is a differentiated interior compatible with a porous outer shell? 2. How does the combination of accretion and compaction influence the temperature? Can accretion reduce the time scale of compaction and differentiation or even prevent them? Can prolonged accretion be approximated adequately by instantaneous formation?
We will show that while the temperature evolution varies strongly with the duration of accretion, the final porosity profiles are rather similar due to the heating by the long-lived radiogenic nuclides. Compared to models neglecting porosity, insulating properties of a low-conductivity layer keep present-day central temperature of Ceres at >500 K even for prolonged accretion duration, supporting the possibility of an active interior.