S319p.59 — How absorption selected galaxies trace the general high-redshift galaxy population

Date & Time

Aug 10th at 6:00 PM until 6:00 PM




Rating ( votes)

Author(s): Lise Christensen1

Institution(s): 1. Dark Cosmology Centre

Strong absorption lines seen in quasar spectra arise when the lines of sight to the quasars intersect intervening galaxies. The associated metal absorption lines from the strongest absorption lines, the damped Lyman alpha absorbers (DLAs), allow us to trace the metallicity of galaxies back to redshifts z>5. Typical metallicities range from 0.1-100% solar metallicities with a huge scatter at any given redshift. Understanding the nature of galaxies that host DLAs is one strategy to probe the early phase and origin of stars in the outskirts of present-day galaxy disks.
The search for emission from the elusive high-redshift DLA galaxies has reached a mature state now that we have determined how to best identify the absorbing galaxies. From a growing number of emission-line detections from DLA galaxies at redshifts ranging between 0.1 and 3, we can analyse galaxies in both absorption and emission, and probe the gas-phase metallicities in the outskirts and halos of the galaxies.
By combining information for galaxies seen in emission and absorption, I will show that there is a relation between DLA metallicities and the host galaxy luminosities similar to the well-known the mass-metallicity relation for luminosity selected galaxies. This implies that DLA galaxies are drawn from the general population of low- to intermediate mass galaxies. We can determine a metallicity gradient in the extended halo of the galaxies out to ~40 kpc, and this allows us to reproduce observed galaxy correlation functions derived from conventional samples of luminosity selected galaxies.