FM16.4.01 — Combined stellar evolution and atmospheric modeling of massive stars: implications for how stars evolve and die

Date & Time

Aug 4th at 2:00 PM until 2:30 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Jose Groh1

Institution(s): 1. Geneva Observatory

Our big picture of stellar evolution and the links between the different classes of massive stars is often built by comparing evolutionary models and observations. However, this comparison is far from trivial, in particular when the effects of mass loss are significant. To tackle this problem, we recently combined stellar evolution calculations using the Geneva code with atmospheric/wind CMFGEN modeling. For the first time, we determined the interior and spectroscopic evolution of massive stars from the zero-age main sequence to the pre-supernova stage. In this talk, I will discuss the spectroscopic evolution of massive stars at solar metallicity, the lifetimes of the different spectroscopic phases (e.g. O-type, RSG, BSG, LBV, WR), and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). I will also show how this is affected by mass loss at different stages of the evolution and the implications for our understanding of massive star evolution and death.