DJp.2.04 — J-PLUS: The Javalambre Photometric Local Universe Survey

Date & Time

Aug 10th at 6:00 PM until 6:00 PM




Rating ( votes)

Author(s): Javier Cenarro1, Antonio Marin-Franch1, Mariano Moles1, David Cristobal-Hornillos1, Claudia Mendes de Oliveira2, Laerte Sodre2

Institution(s): 1. CEFCA, 2. IAG/USP

The Javalambre-Photometric Local Universe Survey, J-PLUS (, is defined to observe 8500 deg2 of the sky visible from the Javalambre Observatory (Teruel, Spain) with the panoramic camera T80Cam at the JAST/T80 telescope, using a set of 12 broad, intermediate and narrow band optical filters. The Project is particularly designed to carry out the photometric calibration of J-PAS ( For this reason, some J-PLUS filters are located at key stellar spectral features that allow to retrieve very accurate spectral energy distributions for more than 5 millions of stars in our Galaxy. Beyond the calibration goals, the unusually large FOV of T80Cam, 2deg2, together with the unique width and location of some filters, turn the J-PLUS Project into a powerful 3D view of the nearby Universe, mapping more than 20 millions of galaxies with reliable distance determinations and a similar number of stars of the Milky Way halo. At a rate of 100 gigabytes of data per night, J-PLUS will provide unprecedented multi-color images of the Universe to address a wide variety of astrophysical questions related with cosmology, large scale structure, galaxy clusters, 2D stellar populations and star formation studies in galaxies, the discovery of high redshift galaxies at specific redshift slices, quasars, supernovae, Milky Way science and structure, and minor bodies in the Solar System. In addition, the repetition of the whole area over time in certain filters will allow to face variability studies in the time domain.
Complementing J-PLUS, a replica of the JAST/T80 telescope, T80Cam and the J-PLUS filters have been installed at the CTIO, allowing to extend the project to the Southern Hemisphere. J-PLUS together with the southern extension, S-PLUS, constitute an All-sky Photometric Local Universe Survey whose details and scientific applications are the bulk of the present talk.